3,185 research outputs found

    A VLBA Search for a Stimulated Recombination Line from the Accretion Region in NGC1275

    Get PDF
    The radio source 3C84, in NGC1275, has a two sided structure on parsec scales. The northern feature, presumed to be associated with a jet moving away from the Earth, shows strong evidence for free-free absorption. The ionized gas responsible for that absorption would be a source of detectable stimulated recombination line emission for a wide range of physical conditions. The VLBA has been used to search for the H65α\alpha hydrogen recombination line. The line is only expected to be seen against the northern feature which contains a small fraction of the total radio flux density. This spatial discrimination significantly aids the search for a weak line. No line was seen, with upper limits of roughly 15% of the continuum over a velocity range of 1486 km/s with resolutions up to 6.6 km/s. In the absence of a strong radiation field, this would imply that the free-free absorbing gas has a wide velocity width, is moving rapidly relative to the systemic velocity, or is concentrated in a thin, high density structure. All of these possibilities are reasonably likely close to an AGN. However, in the intense radiation environment of the AGN, even considering only the radiation we actually observe passing through the free-free absorbing gas, the non-detection is probably assured by a combination of saturation and radiation damping.Comment: 14 pages with 4 postscript figures. Accepted for publication in the April 2003 Astronomical Journa

    Spectroscopy of the optical Einstein ring 0047-2808

    Get PDF
    We present optical and near-infrared spectroscopic observations of the optical Einstein ring 0047-2808. We detect both [OIII] lines 4959, 5007 near 2.3 micron, confirming the redshift of the lensed source as z=3.595. The Ly-a line is redshifted relative to the [OIII] line by 140+-20 km/s. Similar velocity shifts have been seen in nearby starburst galaxies. The [OIII] line is very narrow, 130 km/s FWHM. If the ring is the image of the centre of a galaxy the one-dimensional stellar velocity dispersion sigma=55 km/s is considerably smaller than the value predicted by Baugh et al. (1998) for the somewhat brighter Lyman-break galaxies. The Ly-a line is significantly broader than the [OIII] line, probably due to resonant scattering. The stellar central velocity dispersion of the early-type deflector galaxy at z=0.485 is 250+-30 km/s. This value is in good agreement both with the value predicted from the radius of the Einstein ring (and a singular isothermal sphere model for the deflector), and the value estimated from the D_n-sigma relation.Comment: 7 pages, 3 figures, accepted for publication in MNRA

    Constraining the unexplored period between reionization and the dark ages with observations of the global 21 cm signal

    Full text link
    Observations of the frequency dependence of the global brightness temperature of the redshifted 21 cm line of neutral hydrogen may be possible with single dipole experiments. In this paper, we develop a Fisher matrix formalism for calculating the sensitivity of such instruments to the 21 cm signal from reionization and the dark ages. We show that rapid reionization histories with duration delta z< 2 can be constrained, provided that local foregrounds can be well modelled by low order polynomials. It is then shown that observations in the range nu = 50 - 100 MHz can feasibly constrain the Lyman alpha and X-ray emissivity of the first stars forming at z = 15 - 25, provided that systematic temperature residuals can be controlled to less than 1 mK. Finally, we demonstrate the difficulty of detecting the 21 cm signal from the dark ages before star formation.Comment: 11 pages, 14 figures, submitted to PR

    Discovery of distant high luminosity infrared galaxies

    Get PDF
    We have developed a method for selecting the most luminous galaxies detected by IRAS based on their extreme values of R, the ratio of 60 micron and B-band luminosity. These objects have optical counterparts that are close to or below the limits of Schmidt surveys. We have tested our method on a 1079 deg^2 region of sky, where we have selected a sample of IRAS sources with 60 micron flux densities greater than 0.2 Jy, corresponding to a redshift limit z~1 for objects with far-IR luminosities of 10^{13} L_sun. Optical identifications for these were obtained from the UK Schmidt Telescope plates, using the likelihood ratio method. Optical spectroscopy has been carried out to reliably identify and measure the redshifts of six objects with very faint optical counterparts, which are the only objects with R>100 in the sample. One object is a hyperluminous infrared galaxy (HyLIG) at z=0.834. Of the remaining, fainter objects, five are ultraluminous infrared galaxies (ULIGs) with a mean redshift of 0.45, higher than the highest known redshift of any non-hyperluminous ULIG prior to this study. High excitation lines reveal the presence of an active nucleus in the HyLIG, just as in the other known infrared-selected HyLIGs. In contrast, no high excitation lines are found in the non-hyperluminous ULIGs. We discuss the implications of our results for the number density of HyLIGs at z<1 and for the evolution of the infrared galaxy population out to this redshift, and show that substantial evolution is indicated. Our selection method is robust against the presence of gravitational lensing if the optical and infrared magnification factors are similar, and we suggest a way of using it to select candidate gravitationally lensed infrared galaxies.Comment: 6 pages, accepted for publication in A&

    New Constraints on the Energetics, Progenitor Mass, and Age of the Supernova Remnant G292.0+1.8 Containing PSR J1124-5916

    Get PDF
    We present spatially resolved spectroscopy of the supernova remnant (SNR) G292.0+1.8 with the Chandra X-ray observatory. This SNR contains the 135 ms pulsar, J1124-5916. We apply non-equilibrium ionization (NEI) models to the data. By comparing the derived abundances with those predicted from nucleosynthesis models, we estimate a progenitor mass of 30-40 solar masses. We also derive the intrinsic parameters of the supernova explosion such as its energy, the age of the SNR, the blast wave velocity, and the swept-up mass. In the Sedov interpretation, our estimated SNR age of 2,600 years is close to the pulsar's characteristic age of 2,900 years. This confirms the pulsar/SNR association and relaxes the need for the pulsar to have a non-canonical value for the braking index, a large period at birth or a large transverse velocity. We discuss the properties of the pulsar wind nebula (PWN) in the light of the Kennel and Coroniti model and estimate the pulsar wind magnetization parameter. We also report the first evidence for steepening of the power law spectral index with increasing radius from the pulsar.Comment: 5 pages, 3 figures. To appear in ApJL, Feb 1 2003 (submitted Oct 9 2002, accepted Dec 19 2002
    corecore